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ABSTRACT

PURPOSE Precision therapies and immunotherapies have revolutionized cancer care, with
novel genomic biomarker-associated therapies being introduced into clinical
practice rapidly, resulting in notable gains in patient survival. Despite this, there
is significant variability in the utilization of tumor molecular profiling that
spans the timing of test ordering, comprehensiveness of gene panels, and
clinical decision support through therapy and trial recommendations.

METHODS To standardize testing, we designed a pathologist-directed test ordering system
at the time of diagnosis using a 523-gene DNA/RNA hybrid comprehensive
genomic profiling (CGP) panel and extensive clinical decision support tools. To
comprehensively characterize the clinical impact of this protocol, we developed
a novel natural language processing (NLP)–based approach to extract clinical
features from physician chart notes. We assessed test actionability rates,
therapy choice, and outcomes across a set of 3,216 patients with advanced
cancer.

RESULTS We observed 49% of patients had at least one actionable genomic biomarker-
driven–approved and/or guideline-recommended targeted or immunotherapy
(IO) and 53%of patients would have been eligible for a precision therapy clinical
trial from three large basket trials. When assessing CGP versus an in silico 50-
gene panel, 67% of tumors compared with 33% harbored actionable alterations
including clinical trials. Among patients with 6 months or more of follow-up,
over 52% received a targeted therapy (TT) or IO, versus 32% who received
conventional chemotherapy alone. Furthermore, patients receiving TT had
significantly improved overall survival compared with patients receiving
chemotherapy alone (P < .001).

CONCLUSION Overall, these data represent a major shift in standard clinical practice toward
molecularly guided treatments (targeted and immunotherapies) over con-
ventional systemic chemotherapy. As guidelines continue to evolve and more
precision therapeutics gain approval, we expect this gap to continue to widen.

INTRODUCTION

Genomic biomarker-driven precision therapy represents an
evolution in cancer treatment over the past decade or more.
Mutation-targeting therapies (eg, epidermal growth factor
receptor [EGFR] tyrosine kinase inhibitors, tyrosine receptor
kinase [TRK] kinase inhibitors, etc) have been associated
with improved outcomes for patients with tumors harboring
specific gene alterations.1 In parallel, immune checkpoint
inhibitor (ICI)–based immunotherapies have emerged as a
major treatment modality resulting in remarkably durable

responses.2,3 Of note, key biomarkers for ICIs include PD-L1
immunohistochemistry (IHC)4-7; similar associations have
been seen using genome-guided biomarkers including tu-
mor mutational burden (TMB) and microsatellite instability
(MSI) assessment.8,9 The field continues to evolve and now
common driver genes, such as KRAS, are targetable with
precision and/or immunotherapeutic approaches.10-12

A key challenge in this landscape is enabling universal access
to genomic testing that comprehensively covers all currently
relevant genomic biomarkers. Barriers to CGP access include
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preference for older tumor profiling tools such as single-
gene or small panel testing, cost of CGP, variable coverage of
CGP by insurers, and physician hesitancy, in part triggered
by the complexity of the interpretation of CGP reports.13-15

Despite this, emerging studies show a clear benefit in
identification of a broader spectrum of actionable targets
and survival gains for precision medicine–treated patient
populations.16-23 Additional CGP benefits include proper
diagnostic tissuemanagement, enabled by the assessment of
all actionable markers in a single assay as well as potentially
improved turnaround times versus traditional workflows
where single biomarkers are often tested sequentially in a
reflexive manner. CGP used as a pathologist-directed test
after diagnosis also has the potential to aid the diagnostic
process, as landmark tumor alterations or mutational sig-
natures may resolve a differential diagnosis or help resolve a
carcinoma of unknown primary.24-28 To systematically as-
sess the impact of pathologist-directed CGP testing, we
developed a novel programmatic approachwhere testingwas
initiated at the time of diagnosis and performed at no cost to
patients. From this, we evaluated the actionability of the CGP
results and analyzed the systemic therapies and outcomes of
the CGP-tested patient cohort.

METHODS

Study Design and Patient Population

For the current study, two novel changes were introduced
to standard clinical workflows. First, we instituted a
pathologist-directed protocol system-wide, where somatic
testing was performed immediately at the time of diagnosis
for all patients with advanced solid tumor, and second, we
standardized all testing to a single 523-gene DNA/RNA CGP
assay (ProvSeq). ProvSeq (Providence, Portland, OR) is an
in-house laboratory-developed protocol (LDP) using hybrid
capture–based DNA and RNA reagents on the basis of
TruSight Oncology 500 High-Throughput kits and se-
quenced on a NovaSeq 6000 sequencer (Illumina, Inc, San

Diego, CA). The assay involves the capture and sequencing of
coding regions and intron-exon junctions of 523 genes
(Appendix Table A1, online only), hybrid capture and RNA-
seq of 23 genes for identification of fusions, and TMB and
MSI assessment. Analysis for the assay is performed using
the TruSight Oncology 500 local app (Illumina, Inc) along
with STAR-Fusion. Interpretation for all cases was per-
formed by an internal team of experts as per AMP/College of
American Pathologists (CAP)/ASCO guidelines in conjunc-
tion with using the OncoKB knowledge base as well as
ClinVar, gnomAD, and COSMIC public databases.29-33 The
ProvSeq LDP assay was validated according to standards set
by the CAP. Analysis for this study included all patients with
advanced cancer tested with CGP under the pathologist-
directed protocol between September 2019 and November
2021. As an in silico comparator cohort, we also evaluated
genomic profiles from this cohort by subsetting to the space
of a 50-gene small panel (evaluating full coding regions for
these genes), on the basis of a previous LDP used at Prov-
idence (ProvSeq Focus; Appendix Table A2 for the gene list).
Note that this panel does not include TMB or MSI because of
the smaller size of the genome interrogated. Additionally,
1,192 patients who underwent commercial sendout testing
between October 2018 and October 2023 were analyzed to
assess the impact pathologist-driven testing had on the time
between genomic report date andfirst oncologist visit within
the health system.

Institutional Review Board Approval

All research was performed under protocol 201900048 ap-
proved by Providence institutional review board. All CGP
results and associated clinical metadata were deidentified
and aggregated for these analyses.

Clinicogenomic Data Set Construction

Biomarker data included variant call files, annotations, des-
ignations of pathogenicity by pathologists/geneticists, clinical

CONTEXT

Key Objective
Does the routine implementation of in-house comprehensive genomic profiling (CGP) for patients with advanced-stage solid
tumor improve patient actionability, treatment, and outcomes?

Knowledge Generated
In 52% of CGP-tested advanced-stage cancer patients with follow-up, the patient received a matched targeted therapy or
immunotherapy as opposed to 32% of patients who received conventional systemic chemotherapy alone. Patients who
received a TT had significant overall survival (OS) as opposed to patients who received only chemotherapy (P < .001).

Relevance
Removing barriers to routine CGP testing can broaden treatment opportunities to patients with cancer and improve OS
relative to conventional chemotherapy alone.
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interpretations, sequencing quality metrics, and PD-L1 IHC
results. Biomarker resultswere linked to clinical data extracted
from electronic medical records (EMRs). Cancer staging,
histology, and vital status data were sourced from the sys-
temwide Cancer Registry. Missing data points (eg, histology
and treatment status) were manually curated. Patients who
received testing between September 2019 and November 2021
were selected for further analysis (N 5 3,216 patients; see
Appendix Fig A1 for a schematic). These patients had amedian
follow-up time of 11 months (IQR, 3-19 months). Of those
3,216patients, 2,028patients (63%)had reported follow-upor
treatment information. The 1,482 stage IV patients who had
reported follow-up information and were not enrolled in a
clinical trial or received a standard-of-care treatment were
assessed for treatment selection after testing. These 1,482
stage IV patients had a median follow-up time of 15 months
(IQR, 8-21 months).

Machine Learning–Based Chart Mining

As PD-L1 results were typically reported in free-text pa-
thology reports in our data set, we developed a machine
learning–based information extraction system,which uses a
customized version of spaCy34 for sentence segmentation
and Python’s Natural Language Toolkit (NLTK)35 for toke-
nization. Each extracted result contains the PD-L1 gene
mentions, assay types (22C3, 28–8, SP263, and SP142),
staining intensity, analysis methods (tumor proportional
score or combined positive score), and expression values
(eg, <1%, 10, high). We developed our rules using notes
before a certain date and constructed a randomly selected
and expert annotated test set from pathology reports and
progress notes after that date. Comparison with the test set
shows that our pipeline achieved high performance: preci-
sion 97.5, recall 89.6, and F1 93.4.

Actionability Assessment

Actionability was assessed on the basis of criteria compiled
in the OncoKB database.30 Tumor types were translated to
OncoTree codes, assessed for stage, and variants were
matched to actionable biomarker categories (OncoKB levels 1
and 2). Patients were assigned to the level ofmost significant
alteration on the basis of levels of evidence: actionable
biomarkers predictive of response to US Food and Drug
Administration (FDA)–approved therapies (level 1), or
predict response to guideline-recommended or standard-
of-care therapies (level 2) that are not FDA-approved. In
instances where a biomarker became actionable within the
window of our study (eg, KRAS G12C in 2021), patients who
received genetic testing before the FDA approval date of the
specific treatment were not considered actionable, even if
they harbored the actionable alteration.

To assess clinical trial matching eligibility, the patients were
compared to the enrollment criteria for three major basket
trials (ASCO-TAPUR, NCI-MATCH, and MyPathway). Note
that this limited list will likely lead to an underestimation of

available trials matching to a patient’s genomic profile;
however, variability in biomarker eligibility descriptions
across ClinicalTrials.gov created challenges with broader
trial matching analyses. For this analysis, patients were
counted as matched if they met the trial’s genomic and
cancer type enrollment criteria, and testing date fell within
the trial’s eligibility time frame. The ASCO-TAPUR clinical
trial arm for treatment with cetuximab in patientswithwild-
type KRAS, NRAS, and BRAF was left out of the analysis to
prevent a scenario where all patients would be eligible for a
clinical trial regardless of whether they possessed wild-type
or mutated KRAS/NRAS.

We also assessed actionability in the cohort on the basis of
the original set of 523 genes in the CGP assay versus the
subset of actionable mutations that would have been de-
tected using a legacy 50-gene panel that was previously
deployed at Providence (Appendix Tables A1 and A2) by
in silico subsetting to the original 50 genes.

Treatment Selection and Outcomes

Treatments were classified by type of therapy: (1) matched
targeted therapy (TT) defined as FDA approved and/or Na-
tional Comprehensive Cancer Network guideline-based
therapies requiring OncoKB level 1 and 2 biomarkers; (2)
non–CGP biomarker–associated TTs are precision therapies
that do not require actionable OncoKB level 1 and 2 bio-
markers (eg, sorafenib in kidney cancer or everolimus in
breast cancer); (3) off-label TTs are therapies that were
administered to patients who lacked the matched OncoKB
level 1 or 2 biomarker for the TT; (4) immunotherapy (IO)
including ICI; (5) chemotherapy and IO (chemo 1 IO)
combination therapy of ICI and traditional antineoplastics;
and (6) chemotherapy only includes use of traditional
antineoplastics.

Overall survival (OS) was documented for all tumor types
(N 5 1,463 patients) for patients with sufficient follow-up
information and separately for a subset of patients with
non–small cell lung cancer (NSCLC; N 5 316 patients). OS
was classified asmonths after report for themost recent CGP
or first treatment to the date of last follow-up or death from
any cause. OS by treatment type is presented in unadjusted
Kaplan-Meier plots as well as a Cox proportional-hazards
model adjusted for patient age and tumor type. All survival
analyses were carried out in R v.4.2.2 using the survival
package.

RESULTS

The goal of the study was to assess the impact of in-house
CGP testing using a protocol where CGP testing was initi-
ated by a pathologist immediately upon a histopathologic
advanced cancer diagnosis (Fig 1A). This workflow replaced
a previous methodology largely using oncologist-directed
small panel testing (5-50 genes). By shifting next gener-
ation sequencing (NGS) upstream, we could facilitate (1)
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B
No. (%)Additional Subtypes

29 (0.9)Liver
27 (0.8)Thyroid
24 (0.7)Missing/not reported
17 (0.5)Cervix
11 (0.3)Peritoneum
8 (0.2)Adrenal gland
8 (0.2)Ampulla of Vater
6 (0.2)Pleura
5 (0.2)Thymus
5 (0.2)Vulva/vagina
4 (0.1)Bone
4 (0.1)Eye
4 (0.1)Lymphoid
3 (0.1)Other
1 (<0.1)Peripheral nervous system
1 (<0.1)Testis

n = 157
Additional subtypes (5%)

n = 136

Biliary tract (4%)
n = 92

Bladder/urinary tract (3%)n = 526

Bowel/colon (16%)

n = 288

Breast (9%)

n = 32

CNS/brain (1%)

n = 79

CUP (2%)

n = 135

Esophagus/stomach (4%)

n = 60

Head and neck (2%)

n = 64
Kidney (2%)

n = 945

Lung (30%)

n = 
101

Ovary/fallopian tube (3%)

n = 186

Pancreas (6%)

n = 162

Prostate (5%)

n = 139

Skin (4%)

n = 42
Soft tissue (1%)

n = 72 Uterus (2%)

C
P < 2.22e–16
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A
Standard Workflow

Pathologist-Directed Workflow

Pathologist

Primary care/oncologist

1. Lesion biopsy 2. Pathology evaluation 3. Cancer diagnosis 4. Treatment planning 5. CGP test order 6. CGP testing 7. Treatment decision

1. Lesion biopsy 2. Pathology evaluation 3. Cancer diagnosis
and CGP test order

4. CGP testing 5. Treatment decision

Pathologist-Directed Workflow

Pathologist

Primary care/oncologist

1. Lesion biopsy 2. Pathology evaluation 3. Cancer diagnosis 4. Treatment planning 5. CGP test order 6. CGP testing 7. Treatment decision

C CG

FIG 1. Overview of testing protocol and cancer subtypes. (A) Pathologist-directed testing versus previous standard genomic testing
workflows in oncology. Created with BioRender.com. (B) Tumor type breakdown of the patients tested in this cohort. (C) Time difference
between NGS report release date and first oncologist visit, in days, between pathologist-directed testing (N 5 432 patients) and non–
pathologist-directed testing (N 5 1,192 patients). CGP, comprehensive genomic profiling; CUP, carcinoma of unknown primary; NGS,
next generation sequencing.
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use of test results in the diagnostic process and (2) make
results available earlier to the treating physician. Testing
was also performed under the research protocol at no cost,
to remove potential reimbursement-related barriers to CGP
testing. The most frequent tumor types tested were lung
(30%), bowel/colon (16%), breast (9%), pancreas (6%),
and prostate (5%; Fig 1B) cancers. We observed a turn-
around time of 14 days (IQR, 12-15 days, Table 1), which was
similar to previous small panel testing at the same insti-
tution. Pathologist-directed testing made results available
earlier in the clinical decision-making process; NGS results
were available more frequently at the time of the initial
medical oncologist visit (median –12 days) compared with
non–pathologist-directed commercial sendout testing
(median 0 days, P < .005; Fig 1C).

The study included 3,216 patients with advanced solid
cancer whose tumors were subject to CGP between Sep-
tember 2019 andNovember 2021 (Table 1). Themedian age of

patients was 67 years, 52% were female, and 80% were
White. Most patients had metastatic disease (88%), 40%
entered hospice, and 33% died during follow-up. Most of the
3,216 patients were tested in 2020 (42%) and 2021 (55%).

Results of Actionability Assessment

Overall, 49% (1,568/3,216) of CGP-tested patients had at
least one guideline-based actionable biomarker (Fig 2A).
Figure 2B shows the breakdown of mutations identified for
genes that are actionable on the basis of FDA or standard-of-
care biomarkers (OncoKB 1 and 2) without FDA approval.
High TMB was the most frequent biomarker detected (22%)
and was detected across almost all the main tumor types
tested, followed by BRAF (11%), and EGFR (4%). Figure 2C
shows the distribution of all detected pathogenic alterations
(ie, not filtered by current actionability). As expected, we
observed high mutational rates for common tumor sup-
pressor genes such as TP53. Additionally, we identified a long

TABLE 1. Patient Characteristics

Characteristic All Patients Stage IV Treated Patients Stage IV Treated NSCLC Patients

Patients with advanced cancer tested using CGP 3,216 1,482 319

Age at the time of testing, years, median (IQR) 67.0 (60.0-75.0) 66.0 (58.0-74.0) 68.0 (62.0, 77.0)

Sex, No. (%)

Female 1,684 (52.4) 779 (52.6) 163 (51.1)

Male 1,532 (47.6) 703 (47.4) 156 (48.9)

Race, No. (%)

White 2,592 (80.6) 1,215 (82.0) 254 (79.6)

Black 76 (2.4) 33 (2.2) 6 (1.9)

Asian 149 (4.6) 87 (5.9) 23 (7.2)

American Indian or Alaska Native 35 (1.1) 15 (1.0) 5 (1.6)

Native Hawaiian or Other Pacific Islander 21 (0.7) 6 (0.4) 2 (0.6)

Unknown 343 (10.7) 126 (8.5) 29 (9.1)

Stage, No. (%)

Stage III 401 (12.5) $ (—) $ (-)

Stage IV 2,815 (87.5) $ (—) $ (-)

Year of test ordered, No. (%)

2019 85 (2.6) 45 (3.0) 13 (4.1)

2020 1,359 (42.3) 664 (44.8) 145 (45.4)

2021 1,772 (55.1) 773 (52.2) 161 (50.5)

Turnaround time in days,a median (IQR) 14.0 (12.0-15.0) 14.0 (12.0-15.0) 13.0 (11.0, 14.0)

Follow-up in months since testing ordered,b median (IQR) 11.0 (3.0-19.0) 15.0 (8.0-21.0) 15.0 (6.0, 21.0)

Deceased, No. (%) 1,508 (47.1) 693 (46.8) 159 (49.8)

Progression, No. (%)c 495 (15.4) 384 (25.9) 71 (22.3)

NOTE. Patient demographics for the cohort of 3,216 advanced-stage (III/IV) patients with CGP testing as well as the subset of 1,482 stage IV
patients with at least 6 months of follow-up time who were evaluated for treatment and OS. Furthermore, the subset of 319 stage IV treated NSCLC
patients highlighted as a most frequent tumor type evaluated for treatment and OS. CGP testing occurred between 2019 and 2021.
Abbreviations: CGP, comprehensive genomic profiling; EMR, electronic medical record; MSFT, Microsoft; NSCLC, non–small cell lung cancer; OS,
overall survival.
an 5 24 missing values removed from average turnaround time calculation.
bn 5 20 missing values were excluded from average follow-up time since testing ordered calculation.
cProgression derived from MSFT HealthNext Progression Model, Cancer Registry Data, and EMR treatment discontinuation documentation.
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tail of other clinically significant genes that may be tar-
getable in the future.

53% (1,710/3,216) of patients tested with CGP matched
to one or more arms across the three assessed basket
clinical trials (ASCO-TAPUR, NCI-MATCH, and MyPath-
way), compared with 26% (843/3,216; P < .001) if patients
were tested using only a 50-gene panel (in silico
cohort). Matched cases included patients matching to IO
trial arms on the basis of TMB-high but also cases
matching on the basis of rare biomarkers (NTRK, PTCH1
etc). Overall, 67% (2,146/3,216) of tumors from CGP-
tested patients compared with 33% (1,050/3,216) for

in silico 50-gene panel patients (P < .001) harbored ac-
tionable mutations on the basis of either guideline-based
or clinical trial matching.

Treatment Utilization Across CGP-Tested Patients

We next assessed the frequency of utilization of precision/IO
therapies for patients with actionable mutations compared
with traditional anticancer therapies (eg, chemotherapy).
From the original 3,216 patients in the cohort, 1,482 patients
with documented clinical follow-up and treatment in our
EMR were evaluated. Figure 3 shows treatment type utili-
zation across the cohort, grouped by the type of biomarkers

2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

900
800
700
600
500
400
300
200
100

0

To
ta

l

Genes

C

A

P

No. of

Patients: in silico

(N = 3,216)

No. of

Patients: CGP

(N  = 3,216)

Overall Eligibility

P = .264544 (16.9)578 (18.0)CT-eligible only
P = <.001207 (6.4)436 (13.6)IO-/TT-eligible only

P = <.001299 (9.3)1,132 (35.2)
Eligible for both CT
and IO/TT

P = <.0012,166 (67.4)1,070 (33.3)Eligible for none

CGP 50 Gene (in silico)

578 1132 436

CT-eligible IO-/TT-eligible

544 299 207

CT-eligible IO-/TT-eligible

B

0

250

500

750

1000

TMB
ROS1

RET
RAD51D
RAD51C
PIK3CA
PD–L1
PALB2
NTRK3
NTRK1
NRAS

MSI
MET

KRAS
KIT

IDH1
FGFR3
FGFR2
FANCL
ERBB2
EGFR

CHEK2
CHEK1
CDK12
BRIP1

BRCA2
BRCA1

BRAF
BARD1

ATM
ALK

Lu
ng

Bowel/
Colo

n

Bre
as

t

Pan
cr

ea
s

Pro
sta

te
Skin

Bilia
ry

 T
ra

ct

Eso
phag

us/S
to

m
ac

h

Ova
ry

/Fa
llo

pian
 T

ube

Blad
der

/U
rin

ar
y T

ra
ct

CUP

Ute
ru

s

Kid
ney

Hea
d an

d N
ec

k

Soft 
Tiss

ue

CNS/B
ra

in
Liv

er

Thyr
oid

Cancer Type

Ac
tio

na
bl

e 
Bi

om
ar

ke
rs

Percent

5
10
20
30
40
50
60

136 92

526

288

3279135
6064 29

945

24
101

186 162 139
42 2772
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100 pathogenic mutations across all cases. CGP, comprehensive genomic profiling; IO, immunotherapy; TT, targeted therapy.
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detected in their CGP profile. Of note, precision/IO therapy
utilization was high, with 54% (311/570) of patients with an
appropriate IO biomarker receiving either IO or IO plus
chemotherapy. This far exceeded the percentage of tested
patients who received chemotherapy alone (32%; 478/
1,482). In patients with only an actionable TT biomarker, use
of a TT was indeed the most widely used single modality,
with 59% (119/203) of TT-positive patients receiving a TT.
Similarly, for patients with only IO-positive biomarkers
(TMB-high, MSI-high, or PD-L1–positive), IO was the
dominant treatment modality, with 63% (256/405) of pa-
tients receiving an IO with or without chemotherapy. As
expected, we detected little (TT) use in patients with no
actionable mutations in their CGP profile (33 patients, 2.0%
of cohort). An additional 74 stage IV patientswere enrolled in
a clinical trial for treatment. 59% (44/74) of those patients
would have been eligible for a precision therapy clinical trial
on the basis of the three basket trials we assessed with 14%

(6/44) of those patients enrolling in the exact clinical trial
that they were deemed eligible for. Off-label TT use was very
rare in patients without an actionable TT biomarker (15
patients, 1% of cohort). IO use in patients without an IO-
positive biomarker was more common, with 13% (123/912)
receiving IO without a matched biomarker, indicative of
newer IO treatment guidelines in advanced cancer.

Clinical Outcomes for CGP-Tested Patients

Across all tumor types, patients treated with biomarker-
guided TT or IO show significant improvements in overall
survival versus chemotherapy (Figs 4A and 4B). Median OS
was 25 months (95% CI, 21 to Inf; TT) versus 17 months
(95%CI, 15-22; chemotherapy only). Patients receiving TT
had better survival outcomes compared with chemo-
therapy only (hazard ratio [HR], 0.66, [95% CI, 0.52 to
0.84], P < .001), even after controlling for age and tumor
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type. For the subset of patients diagnosed with NSCLC, the
median OS was 26 months (95% CI, 21 to Inf; TT) versus
16 months (95% CI, 6 to Inf; chemotherapy only). Patients
with NSCLC receiving TT had better survival outcomes
compared with chemotherapy only (HR, 0.55 [95% CI, 0.32
to 0.95], P 5 .032) after controlling for age. We did not
observe differences between chemotherapy and IO (or
chemo-IO) survival, which may be due in part to cohort
sizes.

DISCUSSION

Our study represents a unique look at the impact of a pro-
grammatic deployment of pathologist-directed CGP testing
across a diverse community health system. Among CGP-
tested patients, 49% had one or more actionable bio-
markers for a TT or IO, a result that significantly exceeded

the actionable fraction when we evaluated the same patients
in silico using a legacy 50-gene panel, suggesting that many
patients receiving small panel testing would likely benefit
from being retested with a CGP. Although our study evalu-
ated impact by removing testing cost barriers, in a real-
world scenario, payers would need to consistently reim-
burse CGP testing to improve overall population outcomes
and to accelerate utilization of CGP in a clinical setting.
Moreover, given that a subset of patients will likely be un-
insured or have significant copays, reducing the cost burden
of testing remains an important goal for the community.
Indeed, deMoor and colleagues have shown that cost burden
was a major factor in oncologist consideration of precision
medicine pathways.36,37 Additionally, current payer prior
authorization processes can add to testing turnaround times,
potentially affecting whether test results are made available
in the initial treatment window.
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different modalities. (B) Pan-cancer hazard model for treated patients. (C) NSCLC Kaplan-Meier survival curves for different treatment
modalities. (D) NSCLC hazardmodel for treated patients. CGP, comprehensive genomic profiling; IO, immunotherapy; NSCLC, non–small cell
lung cancer; OS, overall survival; TT, targeted therapy.

1530 | © 2024 by American Society of Clinical Oncology

Dowdell et al

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 7
8.

92
.2

40
.1

63
 o

n 
N

ov
em

be
r 

19
, 2

02
4 

fr
om

 0
78

.0
92

.2
40

.1
63

C
op

yr
ig

ht
 ©

 2
02

4 
A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
lin

ic
al

 O
nc

ol
og

y.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.
 



In the CGP-tested cohort, 36% (537/1,482) of patients re-
ceived some type of TT or IO on the basis of the direct impact
of a biomarker finding on a CGP report. Moreover, if we add
in patients who received a non–biomarker-associated
molecularly targeted therapy (eg, vascular endothelial
growth factor inhibitors, cyclin-dependent kinase [CDK]
inhibitors etc), we see that 68% (1,004/1,482) of patients
received some type of TT or IO. This represents a fascinating
paradigm shift in the treatment of advanced cancer and is
indicative of thewide spectrumof targetable biomarkers that
have made oncology the standard-bearer for precision ap-
proaches in medicine. Moreover, we found inherent value in
making tumor genomic profiles available to researchers to
aid in the development of the next generation of precision
oncologic approaches. This is clear in the profound impact
that The Cancer Genome Atlas has had on the field, and by
newer data sharing consortia such as Project Genomics
Evidence Neoplasia Information Exchange (GENIE), which
has already aggregated over 100,000 tumor genomics cases
and is rapidly growing in scale.44-47

Despite these successes, there are still significant gaps in
providing precision medicine for all patients with advanced

cancer. Many tested cases still do not yield an actionable
marker, and that number is particularly high across some
tumor types. Although some frequent targets have recently
become actionable (KRAS, IDH1 etc), more developments
are needed, especially given that relevancy and utility have
previously been cited as key rationales for oncologists’ lack
of utilization of genomic testing.38 For the subset of pa-
tients with actionable markers who did not receive a pre-
cision therapy, significant effort needs to be invested to
close these gaps including education and increased access
to treatment. Moreover, socioeconomically disadvantaged
communities may lack access to critical support systems
related to precision medicine, such as clinical decision
support, integration and alerts in electronic medical record
systems, and access to precision medicine trials and mo-
lecular tumor boards.38-40 Indeed, despite high matching
rates to precision clinical trials, our data show that en-
rollment in these trials was low, consistent with other
studies, and may be reflective of these factors.41-43 As data
complexity increases as well as integration of other mo-
dalities such as liquid biopsies, novel support strategies are
needed to ensure that precision medicine is truly available
to all who need it.
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APPENDIX

All patients tested with CGP from
September 2019 to November 2021

(N = 3,216)
D

at
a 

S
o

u
rc

e

Patients tested with CGP with
treatment or follow-up

(n = 2,028)

Therapy selection analysis on the basis 
of actionable biomarkers (Stage IV)

(n = 1,482)

Overall survival analysis
(Stage IV)
(n = 1,463)

Overall survival analysis NSCLC
(Stage IV)
(n = 316)

All patients tested with CGP
(n = 3,216)

OncoKB biomarker
actionability assessment

(n = 3,216)

Assessment with
523-Gene ProvSeq

Panel
(n = 3,216)

Assessment with
50-gene in silico

panel
(n = 3,216)

Basket trial eligibility assessment
(n = 3,216)

Assessment with
523-Gene ProvSeq

Panel
(n = 3,216)
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50-gene in silico

panel
(n = 3,216)
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FIG A1. Flow diagram indicating scope of cohort throughout analyses. Flow diagram depicting
the number of patients analyzed for overall actionability and clinical trial eligibility with the 523
Gene ProvSeq CGP panel and the 50-gene previous-generation in silico panel, in addition to the
number of patients analyzed for therapy selection after testing and overall survival. CGP,
comprehensive genomic profiling; NSCLC, non–small cell lung cancer.
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TABLE A1. ProvSeq Gene List

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

ABL1 3 3 3

ABL2 3 3 —

ACVR1 3 3 —

ACVR1B 3 3 —

AKT1 3 3 —

AKT2 3 3 —

AKT3 3 3 3

ALK 3 3 3

ALOX12B 3 3 —

ANKRD11 3 3 —

ANKRD26 3 3 —

APC 3 3 —

AR 3 3 3

ARAF 3 3 —

ARFRP1 3 3 —

ARID1A 3 3 —

ARID1B 3 3 —

ARID2 3 3 —

ARID5B 3 3 —

ASXL1 3 3 —

ASXL2 3 3 —

ATM 3 3 —

ATR 3 3 —

ATRX 3 3 —

AURKA 3 3 —

AURKB 3 3 —

AXIN1 3 3 —

AXIN2 3 3 —

AXL 3 3 3

B2M 3 3 —

BAP1 3 3 —

BARD1 3 3 —

BBC3 3 3 —

BCL10 3 3 —

BCL2 3 3 3

BCL2L1 3 3 —

BCL2L11 3 3 —

BCL2L2 3 3 —

BCL6 3 3 —

BCOR 3 3 —

BCORL1 3 3 —

BCR 3 3 —

BIRC3 3 3 —

BLM 3 3 —

BMPR1A 3 3 —

BRAF 3 3 3

BRCA1 3 3 3

BRCA2 3 3 3

BRD4 3 3 —

(continued in next column)

TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

BRIP1 3 3 —

BTG1 3 3 —

BTK 3 3 —

C11orf30 3 3 —

CALR 3 3 —

CARD11 3 3 —

CASP8 3 3 —

CBFB 3 3 —

CBL 3 3 —

CCND1 3 3 —

CCND2 3 3 —

CCND3 3 3 —

CCNE1 3 3 —

CD274 3 3 —

CD276 3 3 —

CD74 3 3 —

CD79A 3 3 —

CD79B 3 3 —

CDC73 3 3 —

CDH1 3 3 —

CDK12 3 3 —

CDK4 3 3 3

CDK6 3 3 —

CDK8 3 3 —

CDKN1A 3 3 —

CDKN1B 3 3 —

CDKN2A 3 3 —

CDKN2B 3 3 —

CDKN2C 3 3 —

CEBPA 3 3 —

CENPA 3 3 —

CHD2 3 3 —

CHD4 3 3 —

CHEK1 3 3 —

CHEK2 3 3 —

CIC 3 3 —

CREBBP 3 3 —

CRKL 3 3 —

CRLF2 3 3 —

CSF1R 3 3 3

CSF3R 3 3 —

CSNK1A1 3 3 —

CTCF 3 3 —

CTLA4 3 3 —

CTNNA1 3 3 —

CTNNB1 3 3 —

CUL3 3 3 —

CUX1 3 3 —

CXCR4 3 3 —

(continued on following page)
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TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

CYLD 3 3 —

DAXX 3 3 —

DCUN1D1 3 3 —

DDR2 3 3 —

DDX41 3 3 —

DHX15 3 3 —

DICER1 3 3 —

DIS3 3 3 —

DNAJB1 3 3 —

DNMT1 3 3 —

DNMT3A 3 3 —

DNMT3B 3 3 —

DOT1L 3 3 —

E2F3 3 3 —

EED 3 3 —

EGFL7 3 3 —

EGFR 3 3 3

EIF1AX 3 3 —

EIF4A2 3 3 —

EIF4E 3 3 —

EML4 3 3 3

EP300 3 3 —

EPCAM 3 3 —

EPHA3 3 3 —

EPHA5 3 3 —

EPHA7 3 3 —

EPHB1 3 3 —

ERBB2 3 3 3

ERBB3 3 3 —

ERBB4 3 3 —

ERCC1 3 3 —

ERCC2 3 3 —

ERCC3 3 3 —

ERCC4 3 3 —

ERCC5 3 3 —

ERG 3 3 3

ERRFI1 3 3 —

ESR1 3 3 3

ETS1 3 3 3

ETV1 3 3 3

ETV4 3 3 3

ETV5 3 3 3

ETV6 3 3 —

EWSR1 3 3 3

EZH2 3 3 —

FAM123B 3 3 —

FAM175A 3 3 —

FAM46C 3 3 —

FANCA 3 3 —

(continued in next column)

TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

FANCC 3 3 —

FANCD2 3 3 —

FANCE 3 3 —

FANCF 3 3 —

FANCG 3 3 —

FANCI 3 3 —

FANCL 3 3 —

FAS 3 3 —

FAT1 3 3 —

FBXW7 3 3 —

FGF1 3 3 —

FGF10 3 3 —

FGF14 3 3 —

FGF19 3 3 —

FGF2 3 3 —

FGF23 3 3 —

FGF3 3 3 —

FGF4 3 3 —

FGF5 3 3 —

FGF6 3 3 —

FGF7 3 3 —

FGF8 3 3 —

FGF9 3 3 —

FGFR1 3 3 3

FGFR2 3 3 3

FGFR3 3 3 3

FGFR4 3 3 3

FH 3 3 —

FLCN 3 3 —

FLI1 3 3 3

FLT1 3 3 3

FLT3 3 3 3

FLT4 3 3 —

FOXA1 3 3 —

FOXL2 3 3 —

FOXO1 3 3 —

FOXP1 3 3 —

FRS2 3 3 —

FUBP1 3 3 —

FYN 3 3 —

GABRA6 3 3 —

GATA1 3 3 —

GATA2 3 3 —

GATA3 3 3 —

GATA4 3 3 —

GATA6 3 3 —

GEN1 3 3 —

GID4 3 3 —

GLI1 3 3 —

(continued on following page)
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TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

GNA11 3 3 —

GNA13 3 3 —

GNAQ 3 3 —

GNAS 3 3 —

GPR124 3 3 —

GPS2 3 3 —

GREM1 3 3 —

GRIN2A 3 3 —

GRM3 3 3 —

GSK3B 3 3 —

H3F3A 3 3 —

H3F3B 3 3 —

H3F3C 3 3 —

HGF 3 3 —

HIST1H1C 3 3 —

HIST1H2BD 3 3 —

HIST1H3A 3 3 —

HIST1H3B 3 3 —

HIST1H3C 3 3 —

HIST1H3D 3 3 —

HIST1H3E 3 3 —

HIST1H3F 3 3 —

HIST1H3G 3 3 —

HIST1H3H 3 3 —

HIST1H3I 3 3 —

HIST1H3J 3 3 —

HIST2H3A 3 — —

HIST2H3C 3 — —

HIST2H3D 3 3 —

HIST3H3 3 3 —

HLA-A * — —

HLA-B * — —

HLA-C * — —

HNF1A 3 3 —

HNRNPK 3 3 —

HOXB13 3 3 —

HRAS 3 3 —

HSD3B1 3 3 —

HSP90AA1 3 3 —

ICOSLG 3 3 —

ID3 3 3 —

IDH1 3 3 —

IDH2 3 3 —

IFNGR1 3 3 —

IGF1 3 3 —

IGF1R 3 3 —

IGF2 3 3 —

IKBKE 3 3 —

IKZF1 3 3 —

(continued in next column)

TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

IL10 3 3 —

IL7R 3 3 —

INHA 3 3 —

INHBA 3 3 —

INPP4A 3 3 —

INPP4B 3 3 —

INSR 3 3 —

IRF2 3 3 —

IRF4 3 3 —

IRS1 3 3 —

IRS2 3 3 —

JAK1 3 3 —

JAK2 3 3 3

JAK3 3 3 —

JUN 3 3 —

KAT6A 3 3 —

KDM5A 3 3 —

KDM5C 3 3 —

KDM6A 3 3 —

KDR 3 3 3

KEAP1 3 3 —

KEL 3 3 —

KIF5B 3 3 3

KIT 3 3 3

KLF4 3 3 —

KLHL6 3 3 —

KMT2B * — —

KMT2C * — —

KMT2D * — —

KRAS 3 3 —

LAMP1 3 3 —

LATS1 3 3 —

LATS2 3 3 —

LMO1 3 3 —

LRP1B 3 3 —

LYN 3 3 —

LZTR1 3 3 —

MAGI2 3 3 —

MALT1 3 3 —

MAP2K1 3 3 —

MAP2K2 3 3 —

MAP2K4 3 3 —

MAP3K1 3 3 —

MAP3K13 3 3 —

MAP3K14 3 3 —

MAP3K4 3 3 —

MAPK1 3 3 —

MAPK3 3 3 —

MAX 3 3 —

(continued on following page)
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TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

MCL1 3 3 —

MDC1 3 3 —

MDM2 3 3 —

MDM4 3 3 —

MED12 3 3 —

MEF2B 3 3 —

MEN1 3 3 —

MET 3 3 3

MGA 3 3 —

MITF 3 3 —

MLH1 3 3 —

MLL 3 3 3

MLLT3 3 3 3

MPL 3 3 —

MRE11A 3 3 —

MSH2 3 3 3

MSH3 3 3 —

MSH6 3 3 —

MST1 3 3 —

MST1R 3 3 —

MTOR 3 3 —

MUTYH 3 3 —

MYB 3 3 —

MYC 3 3 3

MYCL1 3 3 —

MYCN 3 3 —

MYD88 3 3 —

MYOD1 3 3 —

NAB2 3 3 —

NBN 3 3 —

NCOA3 3 3 —

NCOR1 3 3 —

NEGR1 3 3 —

NF1 3 3 —

NF2 3 3 —

NFE2L2 3 3 —

NFKBIA 3 3 —

NKX2-1 3 3 —

NKX3-1 3 3 —

NOTCH1 3 3 3

NOTCH2 3 3 3

NOTCH3 3 3 3

NOTCH4 3 3 —

NPM1 3 3 —

NRAS 3 3 —

NRG1 3 3 3

NSD1 3 3 —

NTRK1 3 3 3

NTRK2 3 3 3

(continued in next column)

TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

NTRK3 3 3 3

NUP93 3 3 —

NUTM1 3 3 —

PAK1 3 3 —

PAK3 3 3 —

PAK7 3 3 —

PALB2 3 3 —

PARK2 3 3 —

PARP1 3 3 —

PAX3 3 3 3

PAX5 3 3 —

PAX7 3 3 3

PAX8 3 3 —

PBRM1 3 3 —

PDCD1 3 3 —

PDCD1LG2 3 3 —

PDGFRA 3 3 3

PDGFRB 3 3 3

PDK1 3 3 —

PDPK1 3 3 —

PGR 3 3 —

PHF6 3 3 —

PHOX2B 3 3 —

PIK3C2B 3 3 —

PIK3C2G 3 3 —

PIK3C3 3 3 —

PIK3CA 3 3 3

PIK3CB 3 3 —

PIK3CD 3 3 —

PIK3CG 3 3 —

PIK3R1 3 3 —

PIK3R2 3 3 —

PIK3R3 3 3 —

PIM1 3 3 —

PLCG2 3 3 —

PLK2 3 3 —

PMAIP1 3 3 —

PMS1 3 3 —

PMS2 3 3 —

PNRC1 3 3 —

POLD1 3 3 —

POLE 3 3 —

PPARG 3 3 3

PPM1D 3 3 —

PPP2R1A 3 3 —

PPP2R2A 3 3 —

PPP6C 3 3 —

PRDM1 3 3 —

PREX2 3 3 —

(continued on following page)

© 2024 by American Society of Clinical Oncology

Dowdell et al

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 7
8.

92
.2

40
.1

63
 o

n 
N

ov
em

be
r 

19
, 2

02
4 

fr
om

 0
78

.0
92

.2
40

.1
63

C
op

yr
ig

ht
 ©

 2
02

4 
A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
lin

ic
al

 O
nc

ol
og

y.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.
 



TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

PRKAR1A 3 3 —

PRKCI 3 3 —

PRKDC 3 3 —

PRSS8 3 3 —

PTCH1 3 3 —

PTEN 3 3 —

PTPN11 3 3 —

PTPRD 3 3 —

PTPRS 3 3 —

PTPRT 3 3 —

QKI 3 3 —

RAB35 3 3 —

RAC1 3 3 —

RAD21 3 3 —

RAD50 3 3 —

RAD51 3 3 —

RAD51B 3 3 —

RAD51C 3 3 —

RAD51D 3 3 —

RAD52 3 3 —

RAD54L 3 3 —

RAF1 3 3 3

RANBP2 3 3 —

RARA 3 3 —

RASA1 3 3 —

RB1 3 3 —

RBM10 3 3 —

RECQL4 3 3 —

REL 3 3 —

RET 3 3 3

RFWD2 3 3 —

RHEB 3 3 —

RHOA 3 3 —

RICTOR 3 3 —

RIT1 3 3 —

RNF43 3 3 —

ROS1 3 3 3

RPS6KA4 3 3 —

RPS6KB1 3 3 3

RPS6KB2 3 3 —

RPTOR 3 3 —

RUNX1 3 3 —

RUNX1T1 3 3 —

RYBP 3 3 —

SDHA 3 3 —

SDHAF2 3 3 —

SDHB 3 3 —

SDHC 3 3 —

SDHD 3 3 —

(continued in next column)

TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

SETBP1 3 3 —

SETD2 3 3 —

SF3B1 3 3 —

SH2B3 3 3 —

SH2D1A 3 3 —

SHQ1 3 3 —

SLIT2 3 3 —

SLX4 3 3 —

SMAD2 3 3 —

SMAD3 3 3 —

SMAD4 3 3 —

SMARCA4 3 3 —

SMARCB1 3 3 —

SMARCD1 3 3 —

SMC1A 3 3 —

SMC3 3 3 —

SMO 3 3 —

SNCAIP 3 3 —

SOCS1 3 3 —

SOX10 3 3 —

SOX17 3 3 —

SOX2 3 3 —

SOX9 3 3 —

SPEN 3 3 —

SPOP 3 3 —

SPTA1 3 3 —

SRC 3 3 —

SRSF2 3 3 —

STAG1 3 3 —

STAG2 3 3 —

STAT3 3 3 —

STAT4 3 3 —

STAT5A 3 3 —

STAT5B 3 3 —

STK11 3 3 —

STK40 3 3 —

SUFU 3 3 —

SUZ12 3 3 —

SYK 3 3 —

TAF1 3 3 —

TBX3 3 3 —

TCEB1 3 3 —

TCF3 3 3 —

TCF7L2 3 3 —

TERC 3 3 —

TERT 3 — —

TET1 3 3 —

TET2 3 3 —

TFE3 3 3 —

(continued on following page)
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TABLE A1. ProvSeq Gene List (continued)

Gene
Symbol

Small
Variants

Copy-Number
Variants

Fusions
(from RNA)

TFRC 3 3 —

TGFBR1 3 3 —

TGFBR2 3 3 —

TMEM127 3 3 —

TMPRSS2 3 3 3

TNFAIP3 3 3 —

TNFRSF14 3 3 —

TOP1 3 3 —

TOP2A 3 3 —

TP53 3 3 —

TP63 3 3 —

TRAF2 3 3 —

TRAF7 3 3 —

TSC1 3 3 —

TSC2 3 3 —

TSHR 3 3 —

U2AF1 3 3 —

VEGFA 3 3 —

VHL 3 3 —

VTCN1 3 3 —

WISP3 3 3 —

WT1 3 3 —

XIAP 3 3 —

XPO1 3 3 —

XRCC2 3 3 —

YAP1 3 3 —

YES1 3 3 —

ZBTB2 3 3 —

ZBTB7A 3 3 —

ZFHX3 3 3 —

ZNF217 3 3 —

ZNF703 3 3 —

ZRSR2 3 3 —

NOTE. 523-DNA/RNACGP for small variants, copy-number variants, and
fusions implemented via pathologist-directed workflow. Check mark
indicates gene is covered under the context of the column. Dashes
indicate not covered. Asterisk indicates the small variant for the gene is
only found in the gVCF file.
Abbreviations: CGP, comprehensive genomic profiling; gVCF, genomic
variant call format.

TABLE A2. Small 50-Gene Panel

Gene Symbol Small Variants Copy Number Variants DNA Fusions

ABL1 — — 3

AKT1 3 — —

AKT3 — 3

ALK 3 3 3

AR 3 3 —

AXL — — 3

BRAF 3 3 3

CCND1 — 3 —

CDK4 3 3 —

CDK6 — 3 —

CTNNB1 3 — —

DDR2 3 — —

EGFR 3 3 3

ERBB2 3 3 3

ERBB3 3 — —

ERBB4 3 — —

ERG — — 3

ESR1 3 — —

ETV1 — — 3

FGFR1 — 3 3

FGFR2 3 3 3

FGFR3 3 3 3

FGFR4 — 3 —

GNA11 3 — —

GNAQ 3 — —

HRAS 3 — —

IDH1 3 — —

IDH2 3 — —

JAK1 3 — —

JAK2 3 — —

JAK3 3 — —

KIT 3 3 —

KRAS 3 3 —

MAP2K1 3 — —

MAP2K2 3 — —

MET 3 3 3

MTOR 3 — —

MYC — 3 —

MYCN — 3 —

NRAS 3 — —

NTRK1 — — 3

NTRK2 — — 3

NTRK3 — — 3

PDGFRA 3 3 3

PIK3CA 3 3 —

PPARG — — 3

RAF1 3 — 3

RET 3 — 3

ROS1 3 — 3

SMO 3 — —

NOTE. Fifty-gene legacy panel of small variants, copy-number variants,
and fusions used before adoption of comprehensive genomic profiling.
Check mark indicates gene is covered under the context of the column.
Dashes indicate not covered.

© 2024 by American Society of Clinical Oncology

Dowdell et al

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 7
8.

92
.2

40
.1

63
 o

n 
N

ov
em

be
r 

19
, 2

02
4 

fr
om

 0
78

.0
92

.2
40

.1
63

C
op

yr
ig

ht
 ©

 2
02

4 
A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
lin

ic
al

 O
nc

ol
og

y.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.
 


	Widespread Adoption of Precision Anticancer Therapies After Implementation of Pathologist ...
	INTRODUCTION
	METHODS
	Study Design and Patient Population
	Institutional Review Board Approval
	Clinicogenomic Data Set Construction
	Machine Learning–Based Chart Mining
	Actionability Assessment
	Treatment Selection and Outcomes

	RESULTS
	Results of Actionability Assessment
	Treatment Utilization Across CGP-Tested Patients
	Clinical Outcomes for CGP-Tested Patients

	DISCUSSION
	REFERENCES
	APPENDIX
	APPENDIX


